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Evolution of a scalar gradient’s probability density function in a random flow

A. Fouxon
Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel

~Received 20 April 1998!

The evolution of the probability density function~PDF! of the passive scalar gradient is studied in the limit
of large Peclet and Prandtl numbers ind dimensions. Without diffusion, the closed Fokker-Planck equation can
be derived and solved analytically leading to a number of conclusions. In particular, it allows the description
of the restoration of the rotational symmetry and enables one to distinguish different regimes of evolution and
different intervals of PDF behavior.@S1063-651X~98!12509-6#

PACS number~s!: 47.27.Ak, 05.20.2y, 05.40.1j, 47.10.1g
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Recently the problem of advection of a passive scalar
random smooth velocity field~Batchelor regime! has at-
tracted a lot of attention due to the fact that a number
questions can be treated analytically. Such a situation is v
rare in the theory of turbulence and this is why the mo
gains its importance. Some of the answers obtained see
be of a general nature. In this paper we address the que
of the gradients’ probability density function~PDF! evolu-
tion. Generally, this question is very complicated beca
one cannot write a closed equation for the PDF. Howeve
one starts with an almost uniform distribution of the pass
scalar, clearly there exists the time period when diffusion
ineffective for the main portion of the PDF. During this sta
of evolution one may discard the diffusion term and the c
responding Fokker-Planck equation can be derived, furn
ing us with a wealth of information about the PDF’s evol
tion as we shall show below. Besides, the information ab
the influence of velocity and pumping terms on statistics
obtained. For the Batchelor regime, comparison with the
tionary case is possible@1#, showing that diffusion dramati
cally modifies the PDF everywhere, which, in particular, im
plies that the ‘‘adiabatic approach’’@2# is wrong for d.1.
The reason for this is that ind51 the regions of small and
large gradients are separated so that the diffusion can
neglected in the consideration of the PDF at small gradie
Conversely, atd.1 due to incompressibility scalar piece
that have small gradients in one direction will possess la
gradients in a transverse direction, making it necessar
include diffusion for an adequate description. We show t
the Fokker-Planck equation in Fourier space can be put a
a substitution in a form that allows us to solve the Cauc
problem in quadratures. We derive the asymptotic forms
the solution and show that they have a clear physical me
ing, thus reconstructing the qualitative picture of the evo
tion.

The equation governing the advection of passive scalau
by the velocity fieldv in the presence of external sourcef is

~] t1v•“2k¹2!u5 f , “•v50. ~1!

We consider this within the framework of the Kraichna
model, in which both velocity and pumping statistics a
Gaussian, isotropic, andd-correlated in time, the correlatio
function for the pumping being ^ f (t1 ,r1) f (t2 ,r2)&
5x(r 12)d(t12t2), where x(r 12) is a function of r 125ur1
2r2u and decays on the scaleL. The velocity field is consid-
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ered to be smooth in space. It can be characterized by
correlation function of the strains i j 5] jv i , which in this
case equals

^s i j ~ t !skl~ t8!&5Q@~d11!d ikd j l 2d i l d jk2d i j dkl#d~ t2t8!,

whereQ is a constant of proportionality andd the dimension
of the space. The possibility of approximating velocity b
the first two terms in the Taylor expansion means that
pumping scaleL is smaller thanLu , the velocity dissipation
scale. To have our scalar field fully turbulent, we demand
mean diffusion scaler d to satisfy Lu@L@r d . Becauser d
;Pr21/2Lu with the Prandtl numberPr5n/k, this implies
Pr@1. Finally, since the Peclet numberPe25dQL2/k
equals the ratio between pumping and diffusion scales,
have Pe@1. It is worth mentioning that this situation i
physically realizable. Such materials as glycerin and o
possess Prandtl numbers of the order 104.

Let us now consider Eq.~1! without the diffusion term.
The equation forw[¹u follows:

] twi52~v•“ !wi2s j i wj1] i f . ~2!

Using it, the closed Fokker-Planck equation for the sca
gradient’s PDFP(w,t)[^d„w(r,t)2w…& can be derived:

] tP5
B

2
¹w

2 P1
Q

2 S ~d11!w2¹w
2 22wiwj

]2

]wi]wj
D P, ~3!

whereB52x9(0). It is of interest to understand the influ
ence of the velocity and force terms separately before c
bining them together. The first term, the force one, cor
sponds to the random walk forw, whereas, as we show
below, the velocity term describes the statistics of the d
tance between two points advected by a random velo
field. Indeed, let us consider the statistics of the distancr
between two points in the fluid, the dynamical equation b
ing ṙ5sr. Due to the fact that the strain statistics is invaria
under s→2s t, one concludes thatG(r,t)[^d„r(t)2r…&
satisfies the same equation~3! with the force term omitted.
To solve this equation we first consider the radial part:

] tG5D@r 2] r
21~d11!r ] r #G, ~4!

with D[Q(d21)/2 andG satisfying the normalized initia
conditionG(r ,0)5G(d/2)/(2pd/2r 8d21)d(r 2r 8). Changing
variablesr 5ez, the equation is easily solved giving@3#,
4019 © 1998 The American Physical Society
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G~r ,t !5
1

ApDt

G~d/2!

4pd/2r 8d
expF2

~ ln@r /r 8#1Ddt!2

4Dt G .
~5!

Now we consider the full problem of two fluid particles in
tially separated byr8, so thatG(r,0)5d(r2r8). We recast
the equation in the following form:

] tG5
Q

2
@~d11!r 2¹222r 2] r

2#G

5
Q

2
$~d21!@r 2] r

21~d11!r ] r #1~d11!L̂2%G,

whereL̂ is the angular momentum operator ind dimensions
defined as the angular part ofr 2¹2. Symbolically the solu-
tion is e2(d11)L̂2Qt/2Grad, showing that the PDF is gettin
isotropic after the characteristic time 1/@(d11)Q#. How-
ever, we are rather interested in the PDF ofuru, G(r ,t)
5r d21* dV G(uru5r ,t). The angular momentum eigen
functions, besides the zeroth one, give zero after ang
integration. On the other hand, they evolve in tim
independently. Expanding the initial condition
the angular momentum eigenfunctions G(r,0)
5G(d/2)/@2pd/2(r 8)d21#d(r 2r 8)1•••, where the dots
stand for the terms vanishing after angular integration,
conclude thatG(r ,t) is given by

G~r ,t !5
1

2ApDt

r d21

r 8d
expF 2

S ln
r

r 8
1DdtD 2

4Dt
G . ~6!

Considering the statistics of the Lyapunov exponent defi
by l[(1/t)ln r/r8, we find

G~l,t !5
1

2
A t

pD
exp2

t~l2Dd!2

4D
. ~7!

Thus we derived in a different way the result of@4# stating
that the Lyapunov exponent is positive and possesses Ga
ian statistics. Now we present the solution of Eq.~3!. Re-
write it as

] tP5
B

2
¹w

2 P1
Q

2 S ~d11!
]

]wi

]

]wi
wjwj

22
]

]wi

]

]wj
wjwi D P.

Making the Fourier transform overw, we have

] tP5
Q

2
@~d11!k2¹k

222k2]k
2#P2

B

2
k2P. ~8!

Again we first consider the radial equation

] tP5D@k2]k
21~d11!k]k2w

*
2 k2#P. ~9!

D was defined before andw
*
2 [B/Q(d21) is the paramete

defining the scale of gradients. To solve the above equa
we introducef (k,t)[(k/w* )d/2P(k/w* ,t). Then f satisfies
ar

e

d

ss-

n

] t f 5DFk2]k
21k]k2S d2

4
1k2D G f . ~10!

On the right-hand side one has a differential equation
modified Bessel functions. This suggests using
Kontorovich-Lebedev integral transform,

f ~k,t !5E
0

`

dx g~x,t !Kix~k!, ~11!

g~x,t !5
2

p2
xsinh~px!E

0

`

f ~k,t !Kix~k!
dk

k
, ~12!

where Kix are the modified Bessel functions of the thi
kind. It gives the solution of the Cauchy problem forP(k,t):

P5
e2Dtd2/4

kd/2 E
0

`

dx exp@2Dtx2#Kix~w* k!g~x,0! ~13!

with g(x,0) given by

g5
2xsinh~px!

p2w
*
d/2 E

0

`

dkPS k

w*
,0DKix~k!kd/221.

We first concentrate on the most typical case of small ini
gradients of the passive scalar, for the investigation of wh
we take the initial conditionP(w,0)5d(w). That means that
the typical value of initial gradients is much less thanw* .
Then using the above solution and performing the inve
Fourier transform one finds

P~w,t !5
e2Dtd2/4

4pd/212G~d/2!w
*
d E0

`

dx xsinh~px! e2Dtx2

3UGS d

4
1

ıx

2 D U4

FS d

4
1

ıx

2
,
d

4
1

ıx

2
,
d

2
,2F w

w*
G2D ,

~14!

where F(a,b,g,z) is the hypergeometric function. Thi
is an exact solution whose asymptotics we now stu
The general Green’s function satisfyingP(w,0)
5G(d/2)/@2pd/2(w8)d21#d(w2w8) is obtained by adding
F(d/41ıx/2,d/41ıx/,2d/2,2@w8/w* #2) to the integrand
above and in the limitw* @w8 it reduces to Eq.~14! as was
stated before. The asymptotic expansions are

P~w,t !'
G2~d/4!e2Dtd2/4

8p~d11!/2w
*
d ~Dt !3/2S w*

w D d/2

lnS w

w* dD ,

w* !w!w* exp~ADt !, Dt@1, ~15!

P~w,t !'
G4~d/4!e2Dtd2/4

16p~d11!/2w
*
d G~d/2!~Dt !3/2

3FS d

4
,
d

4
,
d

2
,2F w

w*
G2D ,

w!w* exp~ADt !, Dt@1, ~16!
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P~w,t !'
e2Dtd2/4

4p~d11!/2w
*
d ADt

S w*
w D d/2G2S d

4
1

ln~w/w* !

4Dt D
GS ln~w/w* !

2Dt D
3e2 ln2~w/w

*
!/4Dt, Dt@1,

eADt@d, exp@2DteADt#@
w

w*
@d, ~17!

P~w,t !'
e2Dtd2/4

w
*
d ~2p!d/2A2Dt

S w*
w D d/2 1 ln2/2Dt

3S ln~w/w* !

2Dt D ~d21!/2

3e2 ln22/4DtexpF2
ln2~w/w* !

4Dt G ,
w@w* eDtd2

, w@w* ed, ~18!

P~w,t !'~2pBt!2d/2expF2
w2

2BtG ,
w!w*

Ad, Dtd3!1. ~19!

The above asymptotics have a simple physical mean
Large gradient statistics is velocity-determined. Indeed,
source injects passive scalar blobs of the characteristic
L, while advection creates filaments possessing large tr
verse gradients. Roughly, advection brings about rand
walk for gradients in the logarithmic scale, whereas
pumping does it in the usual scale. When we start from
uniform distribution of the scalar, then the advection is u
important at the initial stage because it has nothing to m
And indeed the main portion of the PDF for small times
purely pumping-determined, as asymptotics~19! reflects.
Nevertheless, it should be stressed that the tails are alw
determined by the advection, as Eq.~18! ~valid at any t!
shows. They arise att510 similarly to the usual diffusion
equation, and are log-normal. This log-normality was fi
predicted by Kraichnan in@3#. How diffusion modifies them
in the steady state is discussed in@1,5#. The above suggest
the following picture. Large gradient (w@w* ) statistics is
determined by the advection but it needs some initial non
nishing gradient to start from. The latter is created by
source and naturally equalsw* , the ratio between pumping
variance and the one of strain multiplied byd21. The last
factor arises because the role of advection grows with dim
sion. And, indeed, if one considers the solution of the eq
tion without pumping with the initial valuew85w* ,

P~w,t !5
1

2ApDt

G~d/2!

2pd/2w
*
d

expF2

S ln
w

w*
1DdtD 2

4Dt
G , ~20!

one observes that asymptotics~18!, ~17!, and~15! are exactly
its corresponding limits. However, there are subleading
pendencies in our asymptotics@as, e.g., ln in Eq.~15!#, which
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could not have been guessed on the basis of the above a
ments. They arise as a result of the fluctuations of the ef
tive initial distribution from which advection starts working
The most delicate result is Eq.~16! considered forw<w*
@otherwise it goes to Eq.~15!#. This is exactly the region
where the interplay between pumping and advection ta
place and it cannot be explained by separating the influen
What should be emphasized is that it is analytic near z
and goes to a constant that monotonically decreases
time asw→0. When one includes diffusivity, the stationa
PDF also goes to some constant asw→0, however it is
nonanalytic at zero@1#. The last fact, most probably, shoul
be attributed to the presence of highly diffused passive sc
sheets@3#.

One of the main concepts of turbulence is the one
statistically restored symmetry@6#. The way the rotational
symmetry is restored for the passive scalar problem can
explicitly shown within our approach. As we demonstrate,
large Pe ~turbulent regime!, isotropization mainly happen
long before the diffusion becomes important and therefor
described by our Fokker-Planck equation. The isotropizat
is due to advection~pumping ‘‘remembers’’ direction!. The
analysis resembles that of two-point statistics. Consider
~8!. We see that again symbolically in Fourier space one
e2(d11)QL̂2t/2Prad showing that the time of the PDF’s isotro
pization is of the ordert;1/D. As a particular example we
consider the evolution of the ‘‘slope’’ that is a constant in
tial gradient in two dimensions withP(w,0)5d(y)d(x
2w8). Introducing spherical coordinates in Fourier space

P~k,0!5eikw8cosu5J0~kw8!12(
n51

ınJn~kw8!cos~nu!.

We have forg(x,0) defined in Eq.~13!

g5
2

p2
xsinh~px!E

0

`S k

w*
D d/2

J0S kw8

w*
DKix~k!

dk

k

1
4

p2(n51
ıne2n2Q~d11!t/2cos~nu!x sinh~px!

3E
0

`S k

w*
D d/2

JnS kw8

w*
DKix~k!

dk

k
.

It is clear that our PDF evolution can serve as a good
proximation to the one with diffusion only within some in
terval of gradients@0,R(t)#, with R(t) being a decreasing
function of time ~eventually going to zero!. If R(1/D)
@w* , then because the form of the PDF at large gradient
velocity-determined and thus should be isotropic, one m
assert that isotropization happened before the diffusion
came effective. However, the check if two PDF’s are clo
near zero can be done by considering the equality of
moments produced by them. If we choose as a criterion
the first 2n moments do not differ appreciably, then the tim
at which this condition breaks should have the formt
5 f (n)ln(Pe)/D, with f (n) some decreasing function ofn.
This is due to the fact that the only possible characteri
time is ln(Pe)/D, which is the period during which the blo
of initial size L is stretched to the diffusion length. Thus b
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choosing large enoughPe ~which corresponds to the turbu
lent regime! one can satisfy the above inequality. We co
clude that isotropization is a property of the velocity fie
and in the turbulent regime happens long before the diffus
becomes effective. To make our words more tangible
consider the above criterion forn52.

We find the critical time at which the ratio of the expe
tation values of (¹u)2 with and without diffusion differs
appreciably from 1. For this purpose, consider a two-po
correlation function of the full passive scalar proble
H(r,t)5^u(r1 ,t)u(r11r,t)&. It satisfies

] tH5
Q

2
r j] i@~d11!r j] i2r j] i2d i j rk]k#H

12k¹2H1x~r !. ~21!

This equation is the same as the Fokker-Planck one with
changeB/2→2k and the forcing term. Imposing the zer
initial condition and using isotropy ofx one gets

H~r ,t !5E
0

t

dt8E
0

`

dr8G~r ,r 8,t2t8!x~r 8!

with G the Green’s function found above but without th
normalization factor and with the appropriate change in
definition of w

*
2 . ^(¹u)2&52¹2H(r 50) implies

^~¹u!2&52E
0

t

dt8E
0

`

dr8x~r 8!¹ r
2G~r ,r 8,t2t8!~r 50! .

Directly using the equation satisfied by the Green’s funct
one finds that¹ r

2G(r ,r 8,t2t8)(r 50)51/(2k)] tG(r 50) . Using
the symmetry of the Green’s function in its spatial arg
ments and the fact thatG(r 50,r 8,t)52pd/2r 8d21/
G(d/2)P(0,r 8,t), whereP is the PDF of¹u considered be-
fore but withw* changed as described above, we obtain

^~¹u!2&5
x~0!

2k
2

2pd/2

2kG~d/2!
E

0

`

dr8x~r 8!P~r 8,0,t !r 8d21.

Looking at the wayP(r 8,0,t) depends onw* we find

E
0

`

dr8x~r 8!PS r 8,0,t,w* 5F2k

D G1/2D r 8d21

5E
0

`

dr8xS F4k

B G1/2

r 8D PS r 8,0,t,w* 5F B

2DG1/2D r 8d21.

Note that nowP is the PDF for¹u without diffusion. As-
suming thatx can be expanded in the Taylor series inside
integral, we obtain
tt.
-

n
e

t

e

e

n

-

e

^~¹u!2&d5^~¹u!2&2
1

2k

3 (
n52

x~2n!~0!

~2n!! S 4k

2@x~2!~0!#
D n

^~¹u!2n&,

where we have usedB52x (2)(0) and the subscriptd means
an average in the full problem with diffusion. This is th
expansion we need because initially the moments are s
and the first term in the series dominates. Thus the crit
time is found from the condition

^~¹u!4&

e^~¹u!2&
;1, e[

x~0!

2k
. ~22!

We introduced the stationary dissipatione and estimated
x (2n)(0);x(0)/L2n, which is good for the first derivatives
of x. Integrating both sides of the radial equation for PD
one can establish

1

D
] t^~¹u!2n&5~2n!~2n1d!^~¹u!2n&

1~w* !2~2n1d22!~2n!^~¹u!2n22&.

Using the normalization ofP this in principle lets one find
recursively all the moments. Solving it forn51 and then for
n52 one finds that Eq.~22! implies

tcr~2!;
1

~d16!D
ln Pe, ~23!

where the index 2 refers to the estimation by the sec
moment. The time is proportional to ln(Pe)/D.

To conclude, large gradient statistics is velocit
determined and, thus, log-normal@3#, the role of pumping
being the creation of the effective initial gradient for th
velocity to mix. In the region of the small gradients an inte
play between pumping and velocity takes place with the
sulting analytic function going to some constant for ze
gradient. In the turbulent regime of large Peclet numbers
isotropization of the initial asymmetry in the passive sca
distribution happens long before the diffusion becomes
fective.
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