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Evolution of a scalar gradient’s probability density function in a random flow

A. Fouxon
Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
(Received 20 April 1998

The evolution of the probability density functigRDPF of the passive scalar gradient is studied in the limit
of large Peclet and Prandtl numberdidimensions. Without diffusion, the closed Fokker-Planck equation can
be derived and solved analytically leading to a number of conclusions. In particular, it allows the description
of the restoration of the rotational symmetry and enables one to distinguish different regimes of evolution and
different intervals of PDF behaviofS1063-651X98)12509-9

PACS numbes): 47.27.Ak, 05.20-y, 05.40:+j, 47.10+g

Recently the problem of advection of a passive scalar in &red to be smooth in space. It can be characterized by the
random smooth velocity fieldBatchelor regime has at-  correlation function of the straiwr;=d;v;, which in this
tracted a lot of attention due to the fact that a number oftase equals
guestions can be treated analytically. Such a situation is very
rare in the theory of turbulence and this is why the model{7ij(D) o (t’))=O[(d+1) 5y 5 — & Sjk— &jj Sl (t—t'),
gains its importance. Some of the answers obtained seem to
be of a general nature. In this paper we address the questi
of the gradients’ probability density functio®DF evolu-
tion. Generally, this question is very complicated becaus

one cannot write a closed equation for the PDF. However, i le. To h lar field ful bul d di
one starts with an almost uniform distribution of the passive>c2/€- T0 have our scalar field fully turbulent, we demand its

scalar, clearly there exists the time period when diffusion igﬂearlltljzlffuspn scaley to satisfyL,>L>ry. Becausery
ineffective for the main portion of the PDF. During this stage ~ P Lu With the Prandtl numbePr=w/x, this |mp2I|es

of evolution one may discard the diffusion term and the cor-P">1. Finally, since the Peclet numbe?e?=dOL?/x
responding Fokker-Planck equation can be derived, furnish€du@!s the ratio between pumping and diffusion scales, we
ing us with a wealth of information about the PDF’s evolu- "@ve Pe>1. It is worth mentioning that this situation is
tion as we shall show below. Besides, the information abouPhysically realizable. Such materials as glycerin and oils
the influence of velocity and pumping terms on statistics i°0SSess Prandtl numbers of the ordet. 10 -

obtained. For the Batchelor regime, comparison with the sta- L€t Us now consider Eq(1) without the diffusion term.
tionary case is possibl], showing that diffusion dramati- 1he equation fow=V ¢ follows:

cally modifies the PDF everywhere, which, in particular, im-
plies that the “adiabatic approach’2] is wrong ford>1.

The reason for this is that id=1 the regions of small and ysing it, the closed Fokker-Planck equation for the scalar

large gradients are separated so that the diffusion can l{?radient’s PDFP(w,t) =( S(w(r,t)—w)) can be derived:
neglected in the consideration of the PDF at small gradients.

Conversely, ad>1 due to incompressibility scalar pieces B_, por2
that have small gradients in one direction will possess largéiP= 5 Vi,P+ | (d+DwVy,—2wiw;———- P, (3)
gradients in a transverse direction, making it necessary to e
include diffusion for an adequate description. We show thatyhereB= — 5”(0). It is of interest to understand the influ-
the Fokker-Planck equation in Fourier space can be put afteince of the velocity and force terms separately before com-
a substitution in a form that allows us to solve the CaUChyDining them together. The first term, the force one, corre-
problem in quadratures. We derive the asymptotic forms okponds to the random walk faw, whereas, as we show
the solution and show that they have a clear physical mearyelow, the velocity term describes the statistics of the dis-
ing, thus reconstructing the qualitative picture of the evolutance between two points advected by a random velocity
tion. field. Indeed, let us consider the statistics of the distance
The equation governing the advection of passive sa&lar hetween two points in the fluid, the dynamical equation be-
by the velocity fieldv in the presence of external sOUC& i — v, pue to the fact that the strain statistics is invariant
o _ under o— —a', one concludes thaG(r,t)={s(r(t)—r))
(dtv-V—«V)o=f, V.0=0. 1) satisfies the same equati¢d) with the force term omitted.

. . . To solve this equation we first consider the radial part:
We consider this within the framework of the Kraichnan

model, in which both velocity and pumping statistics are f9tG=D[f2f9r2+(d+ 1)ra,]G, 4)
Gaussian, isotropic, anétcorrelated in time, the correlation

function for the pumping being (f(t1,r{)f(t>,r;))  with D=0(d—1)/2 andG satisfying the normalized initial
=x(r1p) 8(t;—t,), where y(ry) is a function ofr,=|r;  conditionG(r,0)=T'(d/2)/(27%%r "9~ 1) 5(r —r'). Changing
—r,| and decays on the scdle The velocity field is consid- variablesr =e?, the equation is easily solved givirig],

ere0 is a constant of proportionality arttithe dimension

of the space. The possibility of approximating velocity by
éhe first two terms in the Taylor expansion means that the
pumping scald. is smaller tharl,, the velocity dissipation

5tWi:_(U'V)Wi_O'jin+07if. (2)

(92
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2

d 2
G(r,t)= - HeJ|f. (10

1 I'(d2) [{_ (In[r/r']+Ddt)?

I St af=D[k202+ka—
\/m477d/2r’dex 2Dt t k K

©)

Now we consider the full problem of two fluid particles ini-
tially separated by’, so thatG(r,0)=4(r—r’). We recast
the equation in the following form:

On the right-hand side one has a differential equation for
modified Bessel functions. This suggests using the
Kontorovich-Lebedev integral transform,

o F(kt) = f “dx g DK (K), 11)
2G=Z[(d+1)r?v2-2r25}1G 0

=2y fwf KK, (k) 2 12
:5{(d—1)[r2ar2+(d+1)r¢9r]+(d+1)|:2}G, Q(X,t)—?xsmr(wx) . (kDK 7=, (12)

where K;, are the modified Bessel functions of the third

wherelL is the angular momentum operatordrdimensions kind. It gives the solution of the Cauchy problem f¢k.{):

defined as the angular part ofV2. Symbolically the solu-
tion is e (d*DL*OU2G _ showing that the PDF is getting o-Dtd%4 -,

isotropic after the characteristic time[(d+1)®]. How- P:TJ dx exd — Dtx?]K,(w, k)g(x,0) (13)
ever, we are rather interested in the PDF|df G(r,t) K 0

=r971f dQ G(|r|]=r,t). The angular momentum eigen- . _

functions, besides the zeroth one, give zero after angula"lVlth 9(x,0) given by

integration. On the other hand, they evolve in time
independently. Expanding the initial condition in g=
the  angular momentum  eigenfunctions G(r,0) 2w
=T (d/2)/[27Y%(r")4=2]8(r—r")+---, where the dots

stand for the terms vanishing after angular integration, waNe first concentrate on the most typical case of small initial
conclude thaG(r,t) is given by gradients of the passive scalar, for the investigation of which
we take the initial conditiol?(w,0)= &(w). That means that

B 2xsinh(wx) (=

K
d/i2—
T dkP( ,O)Kix(k)k L
*

0 W*

r 2 the typical value of initial gradients is much less thap .
pd-1 Inr—,+Ddt Then using the above solution and performing the inverse
G(r,t)= —exp ———— 6 Fourier transform one finds
RPN aDt ©
ethd2/4 w
Considering the statistics of the Lyapunov exponent definedp(,t)= f dx xsinh(x) e Dt
by A=(1/)Inr/r’, we find 479220 (di2)wl Jo
1 [t t(\—Dd)? de+IX 4F d+|x d+|xd w ]2
G()\,t)—z Eexp— T (7) 4 2 4 24 219" w, )
Thus we derived in a different way the result[df stating (14

fchat the_Lyapunov exponent is positive ar_1d possesses Gausv'vshere F(a.B,7.2) is the hypergeometric function. This
ian statistics. Now we present the solution of E8).. Re- . . !
write it as is an exact solution whose asymptotics we now study.

The general Green's function satisfyingP(w,0)
P =T'(d/2)/[27Y%(w")9"1]8(w—w’) is obtained by adding
(d+1)a—WiWWjo F(d/4+1x/2,d/4+1x/,2d/2,—[w'/w,]?) to the integrand

B_, (C]
atPZ EVWP-F ? ]
above and in the limitv, >w’ it reduces to Eq(14) as was

Jd d stated before. The asymptotic expansions are
—2— —Ww;w; | P.
' | IW; IW; ot Fz(d/4)e—Dtd2/4 w, d/zI W
Making the Fourier transform ovev, we have (w,t)~ g D2y (D) 2| W n w,d)’
0 2yv2 242 B 2
0P = [(d+1)k?Vi—2k%5]P— 5 k°P. (8) w, <w<w, exp(yDt), Dt>1, (15)
4 ~Dtd?/4
Again we first consider the radial equation P(w,t)~ ["(d/4)e
) s ) 1674 D2wI T (d/2)(Dt)%?
P=D[k?d;+ (d+ 1)k —wi k=]P. 9 (d d d [ w 2)
D was defined before and? =B/@(d—1) is the parameter 4'4°2° |w,| /)’

defining the scale of gradients. To solve the above equation
we introducef (k,t)= (k/w, )¥2P(k/w, ,t). Thenf satisfies w<w, exp(\Dt), Dt>1, (16)
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d In(w/w,)
o Dtd%/4 (W* ) d/2F2<Z + —*)

4Dt
P(W,t)~ —————— | —*
(w,t) 4028 Bl w F(In(w/w*))
2Dt

x @~ In*(wiw, 4Dt D1,

4021

could not have been guessed on the basis of the above argu-
ments. They arise as a result of the fluctuations of the effec-
tive initial distribution from which advection starts working.
The most delicate result is EqL6) considered fow=w,
[otherwise it goes to Eq(15)]. This is exactly the region
where the interplay between pumping and advection takes
place and it cannot be explained by separating the influences.
What should be emphasized is that it is analytic near zero

ePis(, exp[2Dte“‘m]> £>d, (17 and goes to a constant that monotonically decreases with
Wi time asw— 0. When one includes diffusivity, the stationary
) PDF also goes to some constant\as-0, however it is
e D w, | 42+ In2f2Dt nonanalytic at zer¢l]. The last fact, most probably, should
P(w,t)~ wo (zw)dlz\/ﬁ W be attributed to the presence of highly diffused passive scalar
*
sheetqd3].
In(w/w, )\ (d=112 One of the main concepts of turbulence is the one of
X(T) statistically restored symmetij6]. The way the rotational
symmetry is restored for the passive scalar problem can be
« o InP21Dt In?(w/w,, ) explicitly shown within our approach. As we demonstrate, at
e e~ —bt |’ large Pe (turbulent regimg isotropization mainly happens
long before the diffusion becomes important and therefore is
s Dtd? s d described by our Fokker-Planck equation. The isotropization
WEW, €T, WEW, € (18 is due to advectiorfpumping “remembers” direction The
W2 analysis resembles that of two-point statistics. Consider Eq.
P(w,t)w(szt)d’zex;{ — _} (8). We see that again symbolically in Fourier space one has
28t e ([@*1OL%2p  showing that the time of the PDF’s isotro-
wew, Jd. Dtdi<1. (19 pization is of the ordet~1/D. As a particular example we

consider the evolution of the “slope” that is a constant ini-
al gradient in two dimensions withP(w,0)= 6(y)d(x

. : : i
The above asymptotics have a simple physical meanlng}. w'’). Introducing spherical coordinates in Fourier space,

Large gradient statistics is velocity-determined. Indeed, the
source injects passive scalar blobs of the characteristic size
L, while advection creates filaments possessing large trans- P(k,0) ='W ¢05¢= 3 (kw')+2 >, 1"J,(kw’)cogn#).
verse gradients. Roughly, advection brings about random n=1

walk for gradients in the logarithmic scale, whereas the i )

pumping does it in the usual scale. When we start from th&/Ve have forg(x,0) defined in Eq(13)

uniform distribution of the scalar, then the advection is un-
important at the initial stage because it has nothing to mix.
And indeed the main portion of the PDF for small times is
purely pumping-determined, as asymptotickd) reflects.
Nevertheless, it should be stressed that the tails are always
determined by the advection, as Ed.8) (valid at anyt)
shows. They arise at=+0 similarly to the usual diffusion
equation, and are log-normal. This log-normality was first ol k \92  [kw dk
predicted by Kraichnan ifi3]. How diffusion modifies them Xf —) Jn(_) Kix(K) 7
in the steady state is discussed in5]. The above suggests 0

W* W*
ghe?eff#%\'ég% p{ﬁ?f& ti;goen %ratd.'tel:ggjswggmsgag.sggsnsn aI_t is clear that our PDF evolution can serve as a good ap-
! y vect v Nt V&sroximation to the one with diffusion only within some in-

nishing gradient to start from. The latter is created by th . . . .
i ) erval of gradient§ O,R(t)], with R(t) being a decreasin
source and naturally equalg, , the ratio between pumping function gf time S([ever(m)J]aIIy goiné)to ze?’)o If R(1/D) 9

variance and the one of strain multiplied by-1. The last >w, , then because the form of the PDF at large gradients is

factor arises because the role of advection grows with dimer\?elocity—determined and thus should be isotropic, one may

ston. And, mdeed,_ i one cons[d.e_rs the SOI,UEOH of the €U ssert that isotropization happened before the diffusion be-
tion without pumping with the initial valuev' =w,_,

came effective. However, the check if two PDF’s are close
W 2 near zero can be done by considering the equality of the
(In—+ Ddt) moments produced by them. If we choose as a criterion that
exd — Wi (20) the first 2n moments do not differ appreciably, then the time
2./#Dt de’zvvi 4Dt ' at which this condition breaks should have the fotm
=f(n)In(Pe/D, with f(n) some decreasing function of
one observes that asymptotids), (17), and(15) are exactly ~ This is due to the fact that the only possible characteristic
its corresponding limits. However, there are subleading detime is In(P€)/D, which is the period during which the blob
pendencies in our asymptotiias, e.g., Inin Eq(15)], which  of initial sizeL is stretched to the diffusion length. Thus by

2 =k \92  [kw' dk
gz—xsmr(wx)fo (W— Jo| — Kix(k)?

a2 W,

4 2 .
+— 2 1"e” " 0@ D2cog ng)x sinh(7X)
mn=1

1 I'(d/2)

P(w,t)=
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choosing large enougRe (which corresponds to the turbu- ) ) 1
lent regimeé one can satisfy the above inequality. We con-  {((V8))q=((V6)*)— P
clude that isotropization is a property of the velocity field

and in the turbulent regime happens long before the diffusion ¥2V(0) i n
becomes effective. To make our words more tangible we X 21 2 ((V)>,
consider the above criterion for=2. n=2 C = [Xx(0)]

We find the critical time at which the ratio of the expec-
tation values of ¥#6)? with and without diffusion differs
appreciably from 1. For this purpose, consider a two-poin
correlation function of the full passive scalar problem
H(r,t)={6(ry,t)6(r,+r,t)). It satisfies

where we have usdfi= — x(?)(0) and the subscrigt means

an average in the full problem with diffusion. This is the
expansion we need because initially the moments are small
and the first term in the series dominates. Thus the critical
time is found from the condition

)
aH =51 [(d+ 1)1~ 1,9, — & ridH

(VO)*) x(0)
—~1 €

+2kV2H+ x(r). (21 «(Ve)2y 2k
This equation is the same as the Fokker-Planck one with the ) o .
changeB/2— 2« and the forcing term. Imposing the zero We introduced the stationary dissipatienand estimated

initial condition and using isotropy of one gets x?M(0)~ x(0)/L?", which is good for the first derivatives
of x. Integrating both sides of the radial equation for PDF

one can establish

(22

H(r.t>=f0t dt'J: dr'G(r,r' t—t")x(r’)

1
—ad (V> =(2n)(2n+d){((VH)>"
with G the Green’s function found above but without the D ((VO)T)=(2n)( HEVOT)

normalization factor and with the appropriate change in the 2 _ on—2
definition of w2 . ((V 6)2)= — V2H(r =0) implies +(w,)%(2n+d=2)(2n){(V )™,
¢ o Using the normalization oP this in principle lets one find
(Vo> = —f dt’f dr’X(r’)Vfg(r,r’,t—t’)(rzo). recursively all the moments. Solving it fo=1 and then for
0 0 n=2 one finds that Eq.22) implies

Directly using the equation satisfied by the Green’s function
one finds thaW 2G(r,r' ,t—t') ;=)= 1/(2«) 3;G(; =0y . Using
the symmetry of the Green’s function in its spatial argu-
ments and the fact thatG(r=0r',t)=27%%"d"Y
I'(d/2)P(0r’,t), whereP is the PDF ofV # considered be-
fore but withw, changed as described above, we obtain

tcr(2)~ m'ﬂ Pe, (23)

where the index 2 refers to the estimation by the second
moment. The time is proportional to R€/D.

To conclude, large gradient statistics is velocity-

x(0) 2792 o determined and, thus, log-normi@], the role of pumping

(V)2 = - f dr'x(r")P(r’,0t)r’'9-1, being the creation of the effective initial gradient for the
2k 2xT(d/2) Jo velocity to mix. In the region of the small gradients an inter-
play between pumping and velocity takes place with the re-
sulting analytic function going to some constant for zero
1/2) . gradient. In the turbulent regime of large Peclet numbers the

r'e-

Looking at the wayP(r’,0t) depends ow, we find

D
- 4|12 B
- fo dr X([E} ' )P(r 0w :[ﬁ | am very much indebted to G. Falkovich, who guided me
throughout all the work and without whom it would have
Note that nowP is the PDF forV ¢ without diffusion. As-  been impossible. | am grateful to E. Balkovsky for help and
suming thaty can be expanded in the Taylor series inside thestimulating discussions. | thank V. Lebedev for a valuable
integral, we obtain remark.

isotropization of the initial asymmetry in the passive scalar

distribution happens long before the diffusion becomes ef-

12 fective.
) r rd—1

f dr' x(r")P
0

r',0t,w, =
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